首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  国内免费   2篇
大气科学   1篇
地球物理   3篇
地质学   7篇
海洋学   6篇
自然地理   13篇
  2020年   1篇
  2018年   1篇
  2013年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Migration of scattered teleseismic body waves   总被引:3,自引:0,他引:3  
  相似文献   
5.
We have compiled carbonate chemistry and sedimentary CaCO3% data for the deep-waters (>1500 m water depth) of the southwest (SW) Pacific region. The complex topography in the SW Pacific influences the deep-water circulation and affects the carbonate ion concentration ([CO32−]), and the associated calcite saturation horizon (CSH, where ??calcite=1). The Tasman Basin and the southeast (SE) New Zealand region have the deepest CSH at ∼3100 m, primarily influenced by middle and lower Circumpolar Deep Waters (m or lCPDW), while to the northeast of New Zealand the CSH is ∼2800 m, due to the corrosive influence of the old North Pacific deep waters (NPDW) on the upper CPDW (uCPDW). The carbonate compensation depth (CCD; defined by a sedimentary CaCO3 content of <20%), also varies between the basins in the SW Pacific. The CCD is ∼4600 m to the SE New Zealand, but only ∼4000 m to the NE New Zealand. The CaCO3 content of the sediment, however, can be influenced by a number of different factors other than dissolution; therefore, we suggest using the water chemistry to estimate the CCD. The depth difference between the CSH and CCD (??ZCSH−CCD), however, varies considerably in this region and globally. The global ??ZCSH−CCD appears to expand with increase in age of the deep-water, resulting from a shoaling of the CSH. In contrast the depth of the chemical lysocline (??calcite=0.8) is less variable globally and is relatively similar, or close, to the CCD determined from the sedimentary CaCO3%. Geochemical definitions of the CCD, however, cannot be used to determine changes in the paleo-CCD. For the given range of factors that influence the sedimentary CaCO3%, an independent dissolution proxy, such as the foraminifera fragmentation % (>40%=foraminiferal lysocline) is required to define a depth where significant CaCO3 dissolution has occurred back through time. The current foraminiferal lysocline for the SW Pacific region ranges from 3100-3500 m, which is predictably just slightly deeper than the CSH. This compilation of sediment and water chemistry data provides a CaCO3 dataset for the present SW Pacific for comparison with glacial/interglacial CaCO3 variations in deep-water sediment cores, and to monitor future changes in [CO32−] and dissolution of sedimentary CaCO3 resulting from increasing anthropogenic CO2.  相似文献   
6.
Delineation of detailed mantle structure frequently requires the separation of source signature and structural response from seismograms recorded at teleseismic distances. This deconvolution problem can be posed in a log-spectral domain where the operation of time-domain convolution is reduced to an additive form. The introduction of multiple events recorded at many stations leads to a system of consistency equations that must be honoured by both the source time functions and the impulse responses associated with propagation paths between sources and receivers. The system is inherently singular, and stabilization is accomplished through the supply of an initial estimate of the source time function. Although alternative choices exist, an effective estimate is derived from the eigenimage associated with the largest eigenvalue in a singular-value decomposition of the suite of aligned seismograms corresponding to a given event. The relation of the deconvolution scheme to simultaneous least-squares deconvolution is examined. Application of the methodology to broadband teleseismic P waveforms recorded on the Canadian National Seismograph Network demonstrates the retrieval of effective Green's functions including secondary phases associated with upper-mantle structure.  相似文献   
7.
Evidence from geochemical tracers (salinity, oxygen, silicate, nutrients, alkalinity, dissolved inorganic carbon (DIC), carbon isotopes (δ13CDIC) and radiocarbon (Δ14C)) collected during the Pacific Ocean World Ocean Circulation Experiment (WOCE) voyages (P10, P15, P17 and P19) indicate there are three main water types at intermediate depths in the Pacific Ocean; North Pacific Intermediate Water (NPIW), Antarctic Intermediate Water (AAIW) and Equatorial Pacific Intermediate Waters (EqPIW). We support previous suggestions of EqPIW as a separate equatorial intermediate depth water as it displays a distinct geochemical signature characterised by low salinity, low oxygen, high nutrients and low Δ14C (older radiocarbon). Using the geochemical properties of the different intermediate depth waters, we have mapped out their distribution in the main Pacific Basin.From the calculated pre-formed δ13Cair–sea conservative tracer, it is evident that EqPIW is a combination of AAIW parental waters, while quasi-conservative geochemical tracers, such as radiocarbon, also indicate mixing with old upwelling Pacific Deep Waters (PDW). The EqPIW also displays a latitudinal asymmetry in non-conservative geochemical tracers and can be further split into North (NEqPIW) and South (SEqPIW) separated at ~2°N. The reason for this asymmetry is caused by higher surface diatom production in the north driven by higher silicate concentrations.The δ13C signature measured in benthic foraminifera, Cibicidoides spp.13CCib), from four core tops bathed in AAIW, SEqPIW and NPIW, reflects that of the overlying intermediate depth waters. The δ13CCib from these cores show similarities and variations down-core that highlight changes in mixing over the last 30,000 yr BP. The reduced offset between the δ13CCib of AAIW and SEqPIW during the last glacial indicates that AAIW might have had an increased influence in the eastern equatorial Pacific (EEP) region at this time. Additional intermediate depth cores and other paleo-geochemical proxies such as Cd/Ca and radiocarbon are required from the broader Pacific Ocean to further understand changes in intermediate depth water formation, circulation and mixing over glacial/interglacial cycles.  相似文献   
8.
Continuous monitoring of bed shear stress in large river systems may serve to better estimate alluvial sediment transport to the coastal ocean.Here we explore the possibility of using a horizontally deployed acoustic Doppler current profiler(ADCP) to monitor bed shear stress,applying a prescribed boundary layer model,previously used for discharge estimation.The model parameters include the local roughness length and a dip correction factor to account for sidewall effects.Both these parameters depend on river stage and on the position in the cross-section, and were estimated from shipborne ADCP data.We applied the calibrated boundary layer model to obtain bed shear stress estimates over the measuring range of the HADCP.To validate the results,co-located coupled ADCPs were used to infer bed shear stress,both from Reynolds stress profiles and from mean velocity profiles. From HADCP data collected over a period of 1.5 years,a time series of width profiles of bed shear stress was obtained for a tidal reach of the Mahakam River,East Kalimantan,Indonesia.A smaller dataset covering 25 hours was used for comparison with results from the coupled ADCPs.The bed shear stress estimates derived from Reynolds stress profiles appeared to be strongly affected by local effects causing upflow and downflow,which are not included in the boundary layer model used to derive bed shear stress with the horizontal ADCP.Bed shear stresses from the coupled ADCP are representative of a much more localized flow,while those derived with the horizontal ADCP resemble the net effect of the flow over larger scales.Bed shear stresses obtained from mean velocity profiles from the coupled ADCPs show a good agreement between the two methods,and highlight the robustness of the method to uncertainty in the estimates of the roughness length.  相似文献   
9.
Four years of recording global earthquakes using a broadband seismometer located at the Ekati diamond mine revealed variations with earthquake azimuth in the arrival of SKS phases. These variations can be modeled assuming two distinct layers of anisotropy in the lithosphere. The lower layer probably lies in the mantle, and the anisotropy aligns with both North American plate motion and the strike of mantle structures identified by previous conductivity and geochemical analyses, at ˜N50°E. The upper layer is hypothesized to result from regional structures in the uppermost mantle and the crust; these trends are distinct from the mantle trends.  相似文献   
10.
Five sites located on a bathymetric transect of the distal Demerara Rise were studied by ODP Leg 207. Albian sediments of essentially terrigenous nature (clay, siltstone, sandstone) are the oldest drilled stratigraphic levels and form apparently the top of the synrift sequence. They are overlain by Cenomanian to Santonian finely laminated black shales, rich in organic matter of marine origin, which accumulated on a thermally subsiding ramp. Early Campanian hiatuses are thought to be the result of final disjunction of Demerara Rise (South America) from Africa and the onset of deep water communication between the two Atlantic basins (south and central). The overlying Uppermost Cretaceous–Oligocene chalk includes rich and diversified calcareous plankton assemblages, as well as two radiolarian-rich intervals (Late Campanian and Middle Eocene). A complex erosional surface developed during the Late Oligocene–Early Miocene. Sedimentation was impeded since then on the intermediate and deep sites of Demerara Rise, possibly due to the action of deep submarine currents. To cite this article: T. Danelian et al., C. R. Geoscience 337 (2005).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号